Game Math: Quaternion Implementations

This post is part of my Game Math Series.

I have covered the basics of quaternions. In this post, I will show some examples of quaternion implementations.

The Interface

We want our quaternion class to handle basic arithmetics (addition, subtraction, and scalar multiplciation), as well as various operations (normalization, re-normalization, inversion, dot product, projection, quaternion product, vector rotation, and slerp).

class Quat
{
  public:
    
    // this component layout is just conforming to my math 
    // notation: [w, v] = [w, (x, y, z)]
    // the common layout is (x, y, z, w)
    float w, x, y, z;

    // constructors
    Quat(void);
    Quat(float w, float x, float y, float z);
    Quat(const Vec3 &axis, float angle);

    // arithmetics
    Quat &operator+=(const Quat &rhs);
    const Quat operator+(const Quat &rhs) const;
    Quat &operator-=(const Quat &rhs);
    const Quat operator-(const Quat &rhs) const;
    Quat &operator*= (float rhs);
    const Quat operator*(float rhs);

    // operations
    Quat &Normalize(void);
    const Quat Normalized(void) const;
    Quat &Renormalize(void);
    const Quat Renormalized(void) const;
    Quat &Invert(void);
    const Quat Inverted(void) const;
    float Dot(const Quat &rhs) const;
    Quat &Project(const Quat &onto);
    const Quat Projected(const Quat &onto) const;
    const Quat operator *(const Quat &rhs) const;
    const Vec3 &operator *(const Vec3 &rhs) const;
};

const Quat operator*(float lhs, const Quat &rhs);
const Quat Slerp(const Quat &q0, const Quat &q1, float t);

Note that all methods and functions work under the assumption that all quaternions are unit quaternions.

Now let’s look at the actual implementations.

Constructors

The default constructor conveniently corresponds to no rotation at all (identity), hence zero rotation angle. Recall that for an orientation represented by an axis \overrightarrow{n} and an angle \theta, the corresponding unit quaternion is:

    \[ q = [cos\frac{\theta}{2}, \overrightarrow{n} sin\frac{\theta}{2}] \]

So this is our default constructor:

Quat::Quat(void)
  : w(1.0f), x(0.0f), y(0.0f), z(0.0f)
{ }

And here’s the constructor that takes the components directly from the client code:

Quat::Quat(float w, float x, float y, float z)
  : w(w), x(x), y(y), z(z)
{ }

Finally, here’s the constructor that takes an orientation represented by an axis and an angle:

Quat::Quat(const Vec3 &axis, float angle)
{
  w = cos(0.5f * angle);

  // assume axis vector is normalized
  float s = sin(0.5f * angle);
  x = axis.x * s;
  y = axis.y * s;
  z = axis.z * s;
}

Arithmetics

The arithmetics are very straightforward, so I will just let the code explain itself:

Quat &Quat::operator+=(const Quat &rhs)
{
  w += rhs.w;
  x += rhs.x;
  y += rhs.y;
  z += rhs.z;
  return *this;
}

const Quat Quat::operator+(const Quat &rhs) const
{
  return Quat(w + rhs.w, x + rhs.x, y + rhs.y, z + rhs.z);
}

Quat &Quat::operator-=(const Quat &rhs)
{
  w -= rhs.w;
  x -= rhs.x;
  y -= rhs.y;
  z -= rhs.z;
  return *this;
}

const Quat Quat::operator-(const Quat &rhs) const
{
  return Quat(w - rhs.w, x - rhs.x, y - rhs.y, z - rhs.z);
}

Quat &Quat::operator*=(const float rhs)
{
  w *= rhs;
  x *= rhs;
  y *= rhs;
  z *= rhs;
  return *this;
}

const Quat Quat::operator*(const float rhs) const
{
  return Quat(w * rhs, x * rhs, y * rhs, z * rhs);
}

const Quat operator*(float lhs, const Quat &rhs)
{
  return rhs * lhs;
}

Normalization

To normalize a quaternion, we need to divide each component by the quaternion’s length.

Quat &Quat::Normalize(void)
{
  float len_inv = 1.0 / sqrt(w * w + x * x + y * y + z * z);
  w *= len_inv;
  x *= len_inv;
  y *= len_inv;
  z *= len_inv;
  return *this;
}

const Quat Quat::Normalized(void) const
{
  float len_inv = 1.0 / sqrt(w * w + x * x + y * y + z * z);
  return
    Quat(w * len_inv, x * len_inv, y * len_inv, z * len_inv);
}

Re-normalization

As mentioned in the previous post, we can utilize polynomial approximation to make re-normalizing a quaternion that is already almost normalized faster than taking the square root of a floating-point number plus a floating-point division.

inline float FastSqrtInvAroundOne(float x)
{
  const float a0 = 15.0f / 8.0f;
  const float a1 = -5.0f / 4.0f;
  const float a2 = 3.0f / 8.0f;
  
  return a0 + a1 * x + a2 * x * x;
}

Quat &Quat::Renormalize(const Vec3 &;v)
{
  const float len_sq = w * w + x * x + y * y + z * z;
  const float len_inv = FastSqrtInvAroundOne(len_sq);
  w *= len_inv;
  x *= len_inv;
  y *= len_inv;
  z *= len_inv;
  return *this;
}

const Quat Quat::Renormalized(const Vec3 &v) const
{
  const float len_sq = w * w + x * x + y * y + z * z;
  const float len_inv = FastSqrtInvAroundOne(len_sq);
  return
    Quat(w * len_inv, x * len_inv, y * len_inv, z * len_inv);
}

Inversion

Inverting a unit quaternion is just taking the conjugate of the quaternion:

Quat &Quat::Invert(void)
{
  x = -x;
  y = -y;
  z = -z;
  return *this;
}

const Quat Quat::Inverted(void) const
{
  return Quat(w, -x, -y, -z);
}

Dot Product

The dot product for quaternions is simple. It is literally treating quaternions as 4D vectors:

float Quat::Dot(const Quat &rhs) const
{
  return w * rhs.w + x * rhs.x + y * rhs.y + z * rhs.z;
}

Projection

The “projection” of one quaternion onto another is also treated the say way you would for 4D vectors. This little tool will come in handy in later posts.

Quat &Quat::Project(const Quat &onto)
{
  const float dot = Dot(onto);
  w = dot * onto.w;
  x = dot * onto.x;
  y = dot * onto.y;
  z = dot * onto.z;
  return *this;
}

const Quat Quat::Projected(const Quat &onto) const
{
  const float dot = Dot(onto);
  return
    Quat(dot * onto.w, 
         dot * onto.x, 
         dot * onto.y, 
         dot * onto.z);
}

Quaternion Product

Recall the formula for quaternion product:

     \begin{flalign*}   q_1 q_2 = [(w_1 w_2 - \overrightarrow{v_1} \cdot \overrightarrow{v_2}), \, (w_1 \overrightarrow{v_2} + w_2 \overrightarrow{v_1} + \overrightarrow{v_1} \times \overrightarrow{v2})] \\ \end{flalign*}

And here’s the implementation:

const Quat::Quat &operator *(const Quat &rhs) const
{
  Quat q;
  
  const Vec3 vThis(x, y, z);
  q.w = w * rhs.w - vThis.Dot(rhs);

  const Vec3 newV = 
    rhs.w * vThis + w * vRhs + vThis.Cross(vRhs);
  q.x = newV.x;
  q.y = newV.y;
  q.z = newV.z;

  return q;
}

Vector Rotation

Now recall that when we have a 3D vector \overrightarrow{r} and would like to rotate it by the orientation represented by a quaternion q, we simply have to perform two quaternion multiplications:

    \[ [0, \overrightarrow{r}'] = q [0, \overrightarrow{r}] q^{-1},  \]

where \overrightarrow{r}' is the rotated vector.

Using this formula, we end up with the following implementation:

const Vec3 &Quat::operator *(const Vec3 &rhs) const
{
  Quat result = 
    (*this) * Quat(0.0f, rhs.x, rhs.y, rhs.z) * Inverted();
  return Vec3(result.x, result.y, result.z);
}

However, we can further optimize this operation by ignoring the result’s w component and expanding out the rest of the formula (the details of which I will omit):

const Vec3 &Quat::operator *(const Vec3 &rhs) const
{
  Vec3 v(x, y, z);
  return
    (2.0f * w * w - 1.0f) * rhs 
    + 2.0f * v.Dot(rhs) * v
    + 2.0f * w * v.Cross(rhs);
}

Slerp

Finally, let’s look at slerp. Recall the slerp formula:

    \[ Slerp(q_1, q_2, t) = \frac{sin((1 - t)\Omega)}{sin\Omega}q_1 + \frac{sin(t\Omega)}{sin\Omega}q_2, \, 0 \le t \le 1,  \]

And here’s our implementation:

const Quat Slerp(const Quat &q0, const Quat &q1, float t)
{
  // the clamp takes care of floating-point errors
  const float omega = acos(Clamp(q0.Dot(q1), -1.0f, 1.0f));
  const float sin_inv = 1.0f / sin(omega);

  return
    sin((1.0f - t) * omega) * sin_inv * q0
    + sin(t * omega) * sin_inv * q1;
}

You may opt to use a faster sine approximation, such as the polynomial approximation technique covered here.

End of Quaternion Implementations

This is the end of the post. I have shown examples of quaternion implementations including basic arithmetics (addition, subtraction, and scalar multiplciation) and some important quaternion operations (normalization, re-normalization, inversion, dot product, projection, quaternion product, vector rotation, and slerp).

About Allen Chou

Physics / Graphics / Procedural Animation / Visuals
This entry was posted in Gamedev, Math. Bookmark the permalink.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.